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Classical Spin in a Potential Field 
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We consider an ensemble of restricted discrete random walks in 2 + I dimensions. 
The restriction on the walks is such as to give particles an intrinsic angular 
momentum. The walks are embedded in a field which affects the mean free path 
of the walks. We show that the dynamics of the walks is such that second-order 
effects are described by a discrete form of Schr6dinger's equation for particles 
in a potential field. This provides a classical context of the equation which is 
independent of its quantum context. 

1. INTRODUCTION 

In nonrelativistic quantum mechanics the dynamics of wave functions 
is governed by Schrtdinger's equation. However, in the theory itself the wave 
function is simply a mathematical device which helps in the calculation of 
observables. The existence (or lack thereof) of a physical analog of wave 
functions is not something which is verifiable from the theory itself, since 
wave functions are not themselves observable. Furthermore, although wave 
functions propagate as waves, one can in reality always choose to observe 
particles. This peculiar feature of quantum mechanics is not an intrinsic 
feature of Schrtdinger's equation. It is a result of the interpretation of the 
equation in the context of quantum mechanics. Part of the objective of  this 
article is to confirm that Schrtdinger's equation can appear in a context in 
which the wave function has a physical counterpart, and is not just a formal 
device for the calculation of observables. 

In order to construct a context in which the solutions of Schr6dinger's 
equation describe features of real physical systems we shall consider a ran- 
dom-walk model of diffusion. There has always been an interest in the relation 
between diffusion theory, which has a microscopic model in Brownian motion, 
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and Quantum Mechanics, which is currently without a satisfactory micro- 
scopic model. In the 1940s Feynman (1948) invented his path integral 
approach to quantum mechanics in which the wave function became a sum 
over Brownian-like paths of a complex exponential. This sum over paths is 
related to the classical Wiener integral of diffusion by a formal analytic 
continuation (Feynman and Hibbs, 1965; Schulman, 1981). Subsequently 
contact has been made between the SchrSdinger and diffusion equations by 
proposing reversible diffusion processes (Nelson, 1985; Nagasawa, 1993; 
Nottale, 1993; El Naschie, 1995). An alternative to these approaches is 
provided by the de Broglie-Bohm interpretation of quantum mechanics (Hol- 
land, 1993) and a collection of current work on understanding the relation 
between quantum and classical physics is provided in E1 Naschie et al. (1995, 
1996a, b) and E1 Naschie and Prigogine (1996). 

Since we cannot observe wave functions directly in their quantum con- 
text, it seems reasonable to look for contexts for SchrOdinger's equation 
where the solutions have a physical counterpart. There are now several such 
systems available, and in these models the objects of study are ensembles 
of classical particles where the systems exhibit quantum dynamics as second- 
order effects. The nonrelativistic free particle in 1 + 1 dimensions is consid- 
ered in (Ord, 1996a) and Ord and Deakin (1996), and a 16-state (2 + 1)- 
dimensional model may be found in Ord and Deakin (1997). Relativistic 
versions may be found in Ord (1996b, c). 

In this work we show that a simple model of a diffusing particle with 
intrinsic angular momentum (Ord, 1993) produces Schrtidinger's equation 
for a particle in a potential field in 2 + 1 dimensions as a second-order 
effect. The model uses only a four-state history and is thus simpler than a 
previous 16-state version (Ord and Deakin, 1997). 

2. CALCULATION 

Assume that particles hop along the principal diagonals where the adja- 
cent nodes on the space-time lattice form a rectangular box whose dimensions 
in space and time are ~ and ~, respectively. If the space axes are labeled x 
and y, then at each time step the particle moves a distance _+~ along both 
axes and a distance ~ along the time axis. The model we consider has the 
unusual feature that at each space-time node on the lattice, the particle can 
either maintain its direction or it can make a turn to the left. That is, if we 
look at the projection of a path in the xy plane, this projection consists of 
directed line segments that are perpendicular and spiral to the left. We label 
the particle in state 1 if the projections of the path on the x axis and the y 
axis both have positive components. The remaining three states are defined 
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Table I 

State Ix Projection on x axis Projection on y axis 

1 Positive Positive 
2 Negative Positive 
3 Negative Negative 
4 Positive Negative 

as illustrated in Table I. Suppose a particle starts in state 1. As it moves  
along the lattice, it will change to state 2, fol lowed by state 3, and then state 
4, before returning again to state 1. Since the particles spiral to the left, there 
is an intrinsic angular momentum associated with each particle. 

Let  p~(mS, nS, se)82 be the probability that a particle leaves (mS, nS) 
at t ime sr in state p, (ix = 1 . . . . .  4). The  difference equations are 

pt(mS,  nS, (s + 1)~) 

= otpl((m - 1)8, (n - 1)8, sr + 13pa((m - 1)8, (n + 1)8, s t )  

p2(mS, nS, (s + 1)e) 

= 13pl((m - 1)8, (n - 1)8, se) + otp2((m + 1)8, (n - 1)8, s t )  

p3(mS, nS, (s + 1)r 

= 13p2((m + 1)8, (n - 1)8, s t )  + otp3((m + 1)8, (n + 1)8, s t )  

p4(mS, nS, (s + 1)~) 

= 13p3((m + 1)8, (n + 1)8, s t )  + otp4((m - 1)8, (n + 1)8, s~) (1) 

where et + 13 = 1. Here a is the probability that a particle maintains its 
direction at the next t ime step, and 13 is the probability that a particle will 
change its direction at the next time step. The governing equations (1) have 
a straightforward interpretation. The first equation in (1) implies that the 
probability p~82 that the particle leaves the node (mS, nS, (s + 1)~) in state 
1 is equal to the sum of  two probabilities: 

�9 ctpl82, the probability that the particle leaves the node ((m - 1)8, 
(n - 1)8, s~) in state 1 and remains in this state when it leaves 
(mS, nS, (s + 1)r 

�9 13p482, the probability that the particle leaves ((m - 1)8, (n + 1)8, 
s r  in state 4 and changes to state 1 when it leaves the node 
(mS, nS, (s + 1)r 
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We impose the condition 

4 +r~ 

~ p~,(mS, nS, se)8 2 = 1 (2) 
ix=l m,n=-Oo 

which establishes the fact that the probability that a particle is somewhere 
on the lattice at a given time is one. Once the initial conditions are given, 
(1) has a unique solution. 

The parameters �9 and 8 are related by the requirement that in the diffusive 
continuum limit, 8/(2e) ---> D as 8 ---> 0, where D is the diffusion constant. 
Hence, we have, for small 8, 

8 2 8 2 

2e D + 0(8) or �9 ~-~ + 0(8  3) (3) 

We put in a potential field through ct. Here we imagine that the lattice walkers 
choose their next state according to a canonical ensemble in which a smooth 
bounded potential v(x)e acts like an energy. That is, suppose 

e - v(x)e 

a = e_~(x) ~ + e~(~)~ (4) 

so that 

, 
~ = ~ ( 1  - v(x)e) + O(e 2) = ~  1 - 8 2 + 0(8  3 ) 

We define 

P = [ P l ,  P2 ,  P3 ,  P4] r 

(5) 

+ 1  m Ex p(mS, nS, se.) = p(m8 + 8, nS, se) 

- - -1  Ey p(mS, nS, se) = p(mS, n8 + 8, se) 

We have 

Etp(mS, nS, se) = p(mS, nS, se + e.) 

Etp(mS, nS, se) = Tp(mS, nS, se) (6) 

T = [ oLEylE;  l 0 0 

f3EylEgl oLEylg~ 0 

o 
'?'I ] (7)  
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The equation we consider is 

Ektp(M~, IV'd, Se) = (T)kp(M~, Ng, S~) (8) 

which follows from (6) by applying the operator Et repeatedly. This equation 
expresses p at t = (S + k)~ in terms o f p  at t = Sr Suppose we are interested 
in (x, y, t) in a neighborhood of a fixed point (X, Y, T) in space-time. Given 
8 and ~, we select the node fin& n& sr as (MTi, N~, Se) such that 

M S < - - X < ( M +  1)8, Ard-----Y<(N+ 1)8 

S~ ----- T < (S + 8)r S = 0 mod 8 (9) 

We will show that the solution of (6) cannot be approximated by a continuous 
function for arbitrarily small 8; however, we can approximate p(mS, nS, sr 
provided we restrict time to t = sr (s = 0, 8, 16 . . . .  ) in (8). Then the solution 
is approximated by a continuous function, which is a sum of solutions of 
partial differential equations when k = 81 (l = 1, 2 . . . .  ) in (8). 

To approximate the solutions for small 8, we expand the shift operators 
as power series in 8 as follows: 

E~ l = 1 + g O +  1 82 a2 
- ox 2 o-~ +~ 

o !82 02 + 0(83) 
E y  I = 1 "4- 8 ~.--y "Dr" 2 Oy 2 (lO) 

O 8 2 O e , =  1 + e ~ +  o(e 2) = 1 + ~ + 0(83 ) (11) 

We determine the eigenvectors and eigenvalues of the operator T, 
(T - k~/)lvj) = 0, where we use bracket notation to represent the vectors, 
i.e., I v j) = vj are column vectors and (vjl = v](, which is the complex 
conjugate transpose of Ivj). We expand T, hi, and Ivj) in a power series in 8: 
Z ~ T O -I- TI8 + T 2 21~ 2, Xj --  V 8  --~ X)8 -}- V .~2, and [~)j> ~ IV?> "~ 
Iv))8 + 1~)~52. Substituting these power series into (6), we have the follow- 
ing set of equations to solve: 

(T O - h~ ~ = 0 (12) 

( r  o - X~ = - r ' l : >  + x)lv o) (13) 

(T O - h~ = -T2fv ~ - 2 T ' l v ) )  + VIv ~ + 2h)lv)) (14) 
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The matrices T i are expressed in terms of  the matrix M(i), 

[ ( t l l )  i 0 t 0 (tto0)i ] 

1 I(toOi (tOl)" 0 0 / (15' 
M(i)  = ~ (toOi (too)i 

Lo 0 (too) i (tlo)iJ 

as follows: T O = M(0), T l = M(1), T 2 = M(2) + (T O - l ) v ( x ) l D ,  tij = ( -  1)ioI 
Ox + (- l)JOlOy.  

The eigenvalues and the corresponding eigenvectors for  T O are readily 
determined. We have T~ v ~ = h~ v~ where 

ho = 0, ho = (1 - i)/2, k ~ = (1 + i)/2, h ~ = 1 (16) 

and the normalized eigenvectors ((v~ v ~ = ~kj) are 

1 1 
Iv ~ = ~ ( - 1 , 1 ,  - 1 , 1 ) r  Iv ~ = ~ (i, - 1 ,  - i ,  1) r 

1 1 
Iv ~ = ~ ( - - i , - - 1 ,  i, 1) r Iv ~ = ~ ( 1 ,  1, 1, 1) T 

These eigenvectors have the property that (v~ - k~ = 0. 
To determine the solution of  (13), we multiply the equation on the left 

by (v~ to obtain 

= X ) %  + (X ~ - ( 1 7 )  

For  k = j ,  we have h) = ( v~  and we can readily show that h) = 0. 
For  k 4: j ,  (v~ v)) = (v~ v~ ~ - h ~ and, upon defining the right-hand 
side o f  this equation to be a'kj, the general solution of  (13) is Iv]) = 
Ek "rk)vO), where "r~0 is arbitrary. These  coefficients have the following values: 
TIj = 0 ( j  4: 1), T41 = T32 : T23 -~- 0,  T21 = T~I : (OlOx + ialay)(1 + i)12, 
T24 = 'r$4 = (OlOx - iOlOy)(1 + i)12, and %2 = "r$3 = OlOx + iOlOy. 

Similarly, to determine the solution of  (14), we multiply the equation 
on the left by (v~ to obtain 

(v~ ~ + 2 (v~  = h2~jk + (h 0 -- h~176 2) (18) 

For  k 4: j ,  we solve this equation for (v~ --  r so that the general 
solution of  (14) is Ivy) = Ek (TkjlTvO), w h e r e  crjj is arbitrary. For k = j ,  we 
have an expression for h 2 that can readily be expressed in the form 

hY = (v~ Iv~ + ( V  - 1)v(x) lD + 2 ~] "ryk'rkj(h ~ -- h ~ (19) 
k 

so that hzt = - v ( x ) / D ,  h~ = (h])* = ~(1 + i) ( V  2 - v(x) /D),  and h 2 = V 2 
- a21OxZ + 0210y 2. 
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Thus, we have T = V diag (hi, ~k2, h3, h4)V -1, where V = [vl, 1)2, 
v3, v4]. With a change of variables p = VZ in (8), we obtain Ekz = 
diag((h0 k . . . . .  (h4)e)Z. The variables are scaled with a change of variables 
from Z to z = (zl, z2, z3, z4) r, where we choose the normalization 
appropriate to the continuum limit; that is, zi = Z,. (i = 1, 4), zi = 2s/2,i (i = 
2, 3). We obtain 

Ekz = diag((ht) k, (,r k, (x/~h3) k, (h4)k)Z (20) 

To approximate z by a continuous function, we expand Et k using (11). Conse- 
quently, the O(1) terms cancel only if k is a muliple of 8. Setting k = 8, and 
expanding Et a from (11), we can readily show that Zl(M~, At6, Se) = 0 to all 
orders of ~. Taking the initial condition zt = 0, then z~ is identically zero. 
For the remaining variables, we define zi(M~, N'6, S~) = z~ At6, Sr 
+ O(~). Substituting the expressions for X 2 into (20) and equating terms 
of O(~2), we find that z~ y, t) is the solution of  the partial differen- 
tial equations 

a o DV2z o 
-~t Z4 = 

0 . O 0 ( - D ~  r2 + v(x))z ~ (21)  i ~ Z ~ = ( - D V  2 + v(x))z ~ ~ O-'tt z3 "= 

Thus, z~ is the solution of  the diffusion equation. This result is expected on 
physical grounds because the potential only affects the local mean free path 
and does not favor either direction. Since the mean free path is zero in the 
continuum limit, z ~ does not contain the finite potential in this limit. For the 
other variables, ~ is a solution of Schr'Odinger's equation and z ~ is a solution 
of the conjugate Schr'0dinger equation. 

In conclusion, on the lattice, p must be real, so that we must take 
z3 = z~. Thus, p in terms of  z is 

= 1 ~32 Z2 ) ($ = 0 mod 8) (22) P v4z4 + (132z 2 -{-- * �9 

3. SUMMARY 

In the above calculation we discovered Schr0dinger dynamics in the 
description of ensembles of classical particles. It is worth noting that there 
is no analytic continuation involved in this result. The complex nature of the 
wave function solutions of the Schr6dinger equations in (21) arise because 
of the actual behavior of  ensembles of particles. We do not have to invoke 
a formal analogy or introduce time-symmetric diffusion. The interference 
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effects implicit in the solutions arise from the fact that forcing the particles 
to have a net angular momentum and then subtracting contributions from 
opposite directions is like building a vacuum of particles and antiparticles. 
The microscopic angular momentum ensures that the virtual particles cannot 
erase themselves through symmetry. [If one allows particles to go left or 
right with equal probability, than the k ~ of equation (16) are all real and there 
is no SchrOdinger dynamics.] Note, however, that the wavelike solutions of 
the resulting Schr6dinger equation arise not from an interacting fluid of 
particles, but as a pattern forming in an ensemble of noninteracting particles. 
Thus the solutions represent ensemble averages of single-particle features. 
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